2017 Admission Exam for Shirai Seminar
Faculty of Economics, Keio University
March 13, 2017

Microeconomics

There are two agents in an economy. Each consumes two kinds of goods X and Y.

Agent 1's utility function is $U_{1}=X_{1} \cdot Y_{1}$ where X_{1} and Y_{1} are amounts of goods X and Y consumed by agent 1.
Similarly, agent 2's utility function is $\mathrm{U}_{2}=2 \mathrm{X}_{2}+\mathrm{Y}_{2}$.
Initial endowments of goods X and Y for agent 1 and 2 are 5 units. (Both agents are endowed with 5 units of goods X and Y)
Assume that these two agents buy and sell goods to one another in a perfectly competitive manner; the price of goods X in terms of goods Y is denoted by p (and price of goods Y is 1).

Q1-1. Write down the budget constraint for agent 1 and 2.
Q1-2. Set up utility maximization problem for agent 1 and 2 respectively.
Q1-3. What are the first order conditions of utility maximization for agent 1 ?
Q1-4. Derive demand function of goods X and Y for agent 1.
Q1-5. What are the first order conditions of utility maximization for agent 2 ?
Q1-6. Derive demand function of goods X and Y for agent 2.
Q1-7. Draw an offer curve (price-consumption curve) for agent 1 in an Edgeworth box diagram.
Q1-8. Draw an offer curve for agent 2 in an Edgeworth box diagram.
Q1-9. What is the equilibrium condition(s) for exchange between agent 1 and 2 under the assumption of perfect competition?

Q1-10. What is the equilibrium price?
Q1-11. Draw a contract curve (Pareto Efficient consumption schedule) for this economy.

Solution
Q1-1 Agent 1's budget constraint: $\mathrm{pX}_{1}+\mathrm{Y}_{1} \leq 5 \mathrm{p}+5$
Agent 2's budget constraint: $\mathrm{pX}_{2}+\mathrm{Y}_{2} \leq 5 \mathrm{p}+5$

Q1-2
Maximize $X_{1} \cdot Y_{1}$ subject to agent 1's budget constraint

Maximize $2 X_{2}+Y_{2}$
subject to agent 2's budget constraint and $X_{2} \geq 0$ and $Y_{2} \geq 0$

Q1-3 Set the Lagrangian of agent 1's maximization problem as

$$
\mathcal{L}^{1}=X_{1} \cdot Y_{1}+\lambda_{1} \cdot\left(5 p+5-p X_{1}-Y_{1}\right) .
$$

Then the first order conditions are

$$
\begin{aligned}
& \mathcal{L}_{X_{1}}^{1} \equiv Y_{1}-\lambda_{1} p=0, \\
& \mathcal{L}_{Y_{1}}^{1} \equiv X_{1}-\lambda_{1}=0, \text { and } \\
& \mathcal{L}_{\lambda_{1}}^{1} \equiv 5(\mathrm{p}+1)-\mathrm{p} X_{1}-Y_{1}=0 .
\end{aligned}
$$

Q1-4 We can solve above first order conditions for X_{1} and Y_{1} in terms of price
p. Denote the solution as $X_{1}(p)$ and $Y_{1}(p)$;

$$
X_{1}(p)=5(p+1) / 2 p \quad \text { and } \quad Y_{1}(p)=5(p+1) / 2
$$

Q1-5 Set the Lagrangian of agent 1's maximization problem as

$$
\mathcal{L}^{2}=2 X_{2}+Y_{2}+\lambda_{2} \cdot\left(5 p+5-p X_{2}-Y_{2}\right) .
$$

The Kuhn-Tucker conditions are

$$
\begin{aligned}
& \mathcal{L}_{X_{2}}^{2} \leq 0, \mathcal{L}_{X_{2}}^{2} \cdot X_{2}=0 \text { and } X_{2} \geq 0, \\
& \mathcal{L}_{Y_{2}}^{2} \leq 0, \quad \mathcal{L}_{Y_{2}}^{2} \cdot Y_{2}=0 \text { and } Y_{2} \geq 0, \text { and } \\
& \mathcal{L}_{\lambda_{2}}^{2} \equiv 5(\mathrm{p}+1)-\mathrm{pX}_{2}-Y_{2}=0,
\end{aligned}
$$

which are equivalent to

$$
\begin{aligned}
& 2-\lambda_{2} p \leq 0, \quad\left(2-\lambda_{2} p\right) X_{2}=0 \text { and } X_{2} \geq 0, \\
& 1-\lambda_{2} \leq 0, \quad\left(1-\lambda_{2}\right) Y_{2}=0 \text { and } Y_{2} \geq 0, \\
& 5(\mathrm{p}+1)-\mathrm{p} X_{2}-Y_{2}=0 .
\end{aligned}
$$

Q1-6 We can solve above first order conditions for X_{2} and Y_{2} in terms of p. Denote the solution as $X_{2}(p)$ and $Y_{2}(p)$;

$$
X_{2}(p)= \begin{cases}0 & \text { if } p>2 \\ {[0,15 / 2]} & \text { if } p=2 \\ 5(p+1) / p & \text { if } p<2\end{cases}
$$

and

$$
Y_{2}(p)= \begin{cases}5(p+1) & \text { if } p>2 \\ {[0,15]} & \text { if } p=2 \\ 0 & \text { if } p<2\end{cases}
$$

where $2 X_{2}(2)+Y_{2}(2)=15$.

Q1-7 The red curve in a figure below is the agent 1's offer curve.

Q1-8. The blue curve in a figure below is the agent 2's offer curve.

Goods X

Q1-9. The equilibrium condition is,

$$
X_{1}(p)+X_{2}(p)=10 . \quad\left(\operatorname{or~}_{1}(p)+Y_{2}(p)=10\right)
$$

The left hand side of above equation is aggregate demand and the left hand side is aggregate supply. Aggregate demand curve is drawn as a red curve and aggregate supply curve is drawn as a blue line in the figure below.

Q1-10. The equilibrium price is $p=2$. (The equilibrium consumptions are $X_{1}=15 / 4$, $X_{2}=25 / 4, Y_{1}=15 / 2$, and $Y_{2}=5 / 2$)

Q1-11. The green lines are the contract curve for this economy.

Macroeconomics
Read the article "The Age of Secular Stagnation" by L. Summers (Foreign Affairs March/April 2016, pp. 2-9) and answer following questions.
Q2-1. Translate the sentence underlined Q2-1 into Japanese.
Q2-2. Explain briefly what "this situation" underlined Q2-2 is?
Q2-3. What is the concept of secular stagnation? Explain.
Q2-4. What is "neutral" interest rate? Explain.
Q2-5. What is the author's policy recommendation to overcome the problem of secular stagnation?

Explain following terms
Q2-6a. propensity to save
Q2-6b. liquidity trap
Q2-6c. quantitative easing

